

로봇

수직선 위 서로 다른 위치에 N개의 점프대가 설치되어 있다. i번 점프대는 고정된 위치 X_i 와 초기 점프 파워 P_i 를 가진다. 당신은 이 수직선 위의 어떤 위치에 로봇을 놓을 것이다.

로봇은 다음과 같은 규칙에 따라 움직인다:

- 로봇이 위치한 지점에 점프대가 없을 경우, 로봇은 왼쪽으로 1만큼 이동한다. 이 과정에서 1의 시간이 소요된다.
- 로봇이 위치한 지점에 점프대가 있을 경우, 로봇은 즉시 점프대를 작동시켜 오른쪽으로 점프대의 파워만큼 이동한다. 점프 후 점프대의 파워는 기존의 두 배로 증가한다. 이 과정에서 1의 시간이 소요된다.

예를 들어, N=2개의 점프대가 다음과 같이 설치되어 있다고 하자.

점프대 번호	위치 X_i	초기 파워 P_i
1	2	2
2	5	3

로봇이 초기 위치 S=3에서 출발하여 T=7만큼의 시간 동안 이동하는 과정은 다음과 같다.

시간 (T)	로 <u>봇</u> 위치	설명	점프대 상태
0	3	초기 위치에서 시작한다.	$P_1=2,P_2=3$
1	2	점프대가 없으므로 왼쪽으로 1칸 이동했다.	$P_1=2,P_2=3$
2	4	위치 2에 있는 1번 점프대를 작동시켜 오른쪽으로 2만큼 점프했다.	$P_1=4,P_2=3$
3	3	점프대가 없으므로 왼쪽으로 1칸 이동했다.	$P_1=4,P_2=3$
4	2	점프대가 없으므로 왼쪽으로 1칸 이동했다.	$P_1 = 4, P_2 = 3$
5	6	위치 2에 있는 1번 점프대를 작동시켜 오른쪽으로 4만큼 점프했다.	$P_1 = 8, P_2 = 3$
6	5	점프대가 없으므로 왼쪽으로 1칸 이동했다.	$P_1 = 8, P_2 = 3$
7	8	위치 5에 있는 2번 점프대를 작동시켜 오른쪽으로 3만큼 점프했다.	$P_1 = 8, P_2 = 6$

Q개의 정수 쌍 (S_j,T_j) ($1\leq j\leq Q$)이 주어진다. 각 쌍에 대해, 로봇이 위치 S_j 에서 출발하여 정확히 T_j 의 시간이 지난 후 도달하게 되는 위치를 구하는 프로그램을 작성하라.

로봇의 위치는 서로 **독립적**으로 계산되어야 하며, 항상 점프대의 초기 상태에서 시작한다. 즉, 각 경우마다 로봇은 수직선 위에 단 하나 존재하며, 점프대의 파워는 입력에서 주어진 초깃값으로부터 다시 시작한다.

제약 조건

- 주어지는 모든 수는 정수이다.
- $1 \le N \le 300\,000$
- $-10^{17} \le X_1 < X_2 < ... < X_N \le 10^{17}$
- $1 \le P_i \le 10^{17} (1 \le i \le N)$
- $1 \le Q \le 300\,000$
- $-10^{17} \le S_j \le 10^{17}, 1 \le T_j \le 10^{17} (1 \le j \le Q)$

부분문제

- 1. (5점) N=1
- 2. (11점) N=2
- 3. (6점) $N,Q\leq 300,\ 1\leq i\leq N$ 인 모든 i에 대하여 $|X_i|,P_i\leq 300,\ 1\leq j\leq Q$ 인 모든 j에 대하여 $|S_j|,T_j\leq 300$
- 4. (7점) $N,Q\leq 3\,000,\ 1\leq i\leq N$ 인 모든 i에 대하여 $|X_i|,P_i\leq 3\,000,\ 1\leq j\leq Q$ 인 모든 j에 대하여 $|S_i|,T_i\leq 3\,000$
- 5. (12점) $N, Q \le 9\,000$
- 6. (23점) $N \le 9000$
- 7. (36점) 추가 제약 조건 없음.

입력 형식

첫 번째 줄에 N이 주어진다.

다음 N개의 줄에 걸쳐 N개의 정수 쌍이 주어진다. 이 중 $i(1 \leq i \leq N)$ 번째 줄에는 X_i 와 P_i 가 공백을 사이에 두고 주어진다.

다음 줄에는 Q가 주어진다.

다음 Q개의 줄에 걸쳐 Q개의 정수 쌍이 주어진다. 이 중 $j(1 \leq j \leq Q)$ 번째 줄에는 S_j 와 T_j 가 공백을 사이에 두고 주어진다.

출력 형식

Q개의 줄을 출력한다. 이 중 $j(1 \leq j \leq Q)$ 번째 줄에는 로봇이 S_j 에서 출발하여 정확히 T_j 의 시간이 지난 후도달하는 위치를 출력한다.

예제

예제 1

입력	출력
2 2 2 5 3 7 3 1 3 2 3 3 3 4	全 4 3 2 6 5 8
3 5 3 6 3 7	

예제 2

입력	출력
3 -3 3 2 2 11 6 4 1 6 6 12	-1 2 15 5
11 3 9 4	