빨강파랑

좌표평면에 빨간색 점 N개와 파란색 점 M개가 있다. 또한, 자연수 W, H가 주어진다.

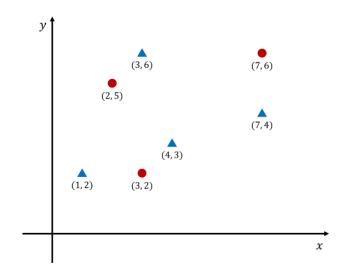
i번째 $(1 \le i \le N)$ 빨간색 점의 좌표는 (rx_i, ry_i) 이고, j번째 $(1 \le j \le M)$ 파란색 점의 좌표는 (bx_j, by_j) 이다. 모든 점들의 좌표는 서로 다르다.

가로 W, 세로 H인 직사각형을 변이 좌표축에 평행하고 꼭짓점이 정수 좌표에 놓이도록 할 것이다. 이 때 직사각형이 포함하는 빨간색 점과 파란색 점의 개수의 차가 가장 크게 만들고 싶다.

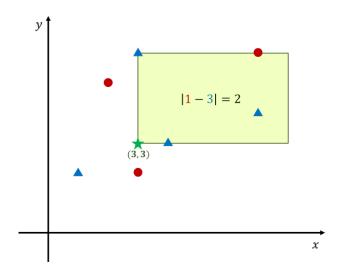
직사각형이 점을 포함한다는 것은, 직사각형의 왼쪽 아래 꼭짓점 좌표가 (a, b)이고 점의 좌표가 (x, y)일 때 $a \le x \le a + W$, $b \le y \le b + H$ 를 만족한다는 것이다.

개수의 차의 최댓값을 구하고, 그 답에 해당하는 직사각형의 위치를 찾아라.

아래 예는 평면에 빨간색 점 3개와 파란색 점 4개가 있는 상황을 보여 준다. 원래 각 점에는 크기가 없지만 설명의 편의상 빨간색 점은 동그라미, 파란색 점은 세모로 표시하였다.



 $W=5,\,H=3$ 으로 주어졌다고 하자. 그 경우 아래와 같이 직사각형의 왼쪽 아래 꼭짓점을 $(3,\,3)$ 에 놓으면 포함하는 빨간색 점이 1개, 파란색 점이 3개가 되어 개수의 차가 2가 된다. 직사각형을 어디에 놓더라도 개수의 차를 3 이상으로 만들 수는 없기 때문에 답은 2가 된다.



제약 조건

- $1 \le N, M \le 100000$
- $1 \le W, H \le 10^9$
- $1 \le rx_i, ry_i \le 10^9 \ (1 \le i \le N)$
- $1 \le bx_j, by_j \le 10^9 \ (1 \le j \le M)$

부분문제

- 1. (5점) $1 \le N, M, W, H, rx_i, ry_i, bx_j, by_j \le 50$.
- 2. (11점) $1 \le N, M, W, H, rx_i, ry_i, bx_j, by_j \le 1000$.
- $3. (15점) 1 \leq N, M \leq 100.$
- 4. (9점) $1 \le N, M \le 1000$.
- 5. (60점) 추가 제약 조건 없음.

입력 형식

첫 번째 줄에 빨간색 점의 개수 N과 파란색 점의 개수 M, 직사각형의 가로 및 세로 길이 W와 H가 각각 주어진다.

- 그 다음 줄부터 N개의 줄에 걸쳐 각 빨간색 점의 x, y좌표 rx_i , ry_i 가 주어진다.
- 그 다음 줄부터 M개의 줄에 걸쳐 각 파란색 점의 x, y좌표 bx_j, by_j 가 주어진다.

출력 형식

첫 번째 줄에 빨간색 점과 파란색 점의 개수의 차의 최댓값을 출력한다.

두 번째 줄에 직사각형의 왼쪽 아래 꼭짓점의 x, y좌표를 출력한다. 답이 여러 개라면 아무 것이나 출력한다.

예제

표준 입력(stdin)	표준 출력(stdout)
3 4 5 3	2
3 2	3 3
2 5	
7 6	
1 2	
4 3	
3 6	
7 4	
3 3 4 4	2
1 1	-2 -2
2 2	
3 3	
1 3	
3 1	
4 4	